- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chu, Rena (2)
-
An, Chen (1)
-
Pierce, Lillian B (1)
-
Pierce, Lillian B. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
An, Chen; Chu, Rena; Pierce, Lillian B (, International Mathematics Research Notices)Abstract In 1980 Carleson posed a question on the minimal regularity of an initial data function in a Sobolev space $$H^s({\mathbb {R}}^n)$$ that implies pointwise convergence for the solution of the linear Schrödinger equation. After progress by many authors, this was recently resolved (up to the endpoint) by Bourgain, whose counterexample construction for the Schrödinger maximal operator proved a necessary condition on the regularity, and Du and Zhang, who proved a sufficient condition. Analogues of Carleson’s question remain open for many other dispersive partial differential equations. We develop a flexible new method to approach such problems and prove that for any integer $$k\geq 2$$, if a degree $$k$$ generalization of the Schrödinger maximal operator is bounded from $$H^s({\mathbb {R}}^n)$$ to $$L^1(B_n(0,1))$$, then $$s \geq \frac {1}{4} + \frac {n-1}{4((k-1)n+1)}.$$ In dimensions $$n \geq 2$$, for every degree $$k \geq 3$$, this is the first result that exceeds a long-standing barrier at $1/4$. Our methods are number-theoretic, and in particular apply the Weil bound, a consequence of the truth of the Riemann Hypothesis over finite fields.more » « less
An official website of the United States government
